Use Excel to Find Your Friends Who Does Not Upvote You 用EXCEL寻找那个好友没帮您点赞

I saw @oflyhigh and @kenchung wrote a post about how to find your friends who does not upvote you by using Python. I am not a programmer and I felt is difficult for me to follow their method and also those who are not programmers too. Finally I find that Microsoft Excel can help you find your friends who does not upvote you too.

我看到@oflyhigh@kenchung写了如何使用PYTHON来寻找那个好友没帮你点赞帖子。 我不是一个程序员,我觉得我和那些不是程序员的人很难使用它们的方法。我发现Microsoft Excel也可以寻找那个好友没帮你点赞。

Step 1: List Down Your Friends' Steemit Username in Microsoft Excel. Change their Username's color to Red for later use.
步骤1:在Microsoft Excel中列出您朋友的Steemit用户名。 将其用户名的颜色更改为红色。
2017-07-26_18h50_45.jpg

Step 2: Change Your Post URL from steemit.com to steemd.com
步骤2:将您的帖子的网址从steemit.com更改为steemd.com

2017-07-26_18h51_15.jpg

Step 3: Click Your Post's Vote Detail and Copy the List of Voters to Excel's Sheet 2
步骤3:点击您的帖子的“VOTE DETAIL" 并将点赞您的帖子的名单复制到Excel的Sheet 2
2017-07-26_18h52_56.jpg

Step 4: Copy Your Friends' Steemit Username from Sheet 1 to Sheet 2
步骤4:将您的朋友的Steemit用户名单从Sheet 1复制到Sheet 2
2017-07-26_18h53_56.jpg

Step 5: Click Column A to Select All
步骤5:点击列A以选择全部
2017-07-26_18h54_55.jpg

Step 6: Click "Data" at Navigation Bar & then Click "Remove Duplicated"
步骤6:点击导航栏上的“Data”,然后点击“Remove Duplicated”
2017-07-26_18h55_37.jpg

Step 7: Click "Remove Duplicated" at Pop Up Box
步骤7:在弹出框中点击“Remove Duplicated”
2017-07-26_18h56_02.jpg

Step 8: 1. Click "Unselect All" 2. Uncheck "My Data Has Header" 3. Select "Column A" 4. Click "Ok"
步骤8:1.点击“Unselect All” 2.取消选中“My Data Has Header” 3.选择“Column A” 4.点击“Ok”
2017-07-26_18h56_37.jpg

Step 9:
A. Number of Duplicated Value Found = The Number of Your Friends Upvote You
A.Number of Duplicated Value Found = 帮您点赞朋友的数量
2017-07-26_18h57_03.jpg

B. Your Friends Who Does Not Upvote You still in Red Color
B. 现在剩下还是红色名字就是还没帮您点赞的朋友
2017-07-26_18h57_30.jpg

C. Now you can send them a reminder to Upvote you
C. 现在您可以提醒他们帮您点赞

Video Demostration/视频演示;

H2
H3
H4
3 columns
2 columns
1 column
38 Comments